If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+31p+56=0
a = 3; b = 31; c = +56;
Δ = b2-4ac
Δ = 312-4·3·56
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-17}{2*3}=\frac{-48}{6} =-8 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+17}{2*3}=\frac{-14}{6} =-2+1/3 $
| 18+4v=7v | | -5/13x=3 | | q-9=-23 | | 5/6=t/38 | | (-7-3y)+6y=-10 | | 8+5x=17/2 | | 9x-9+1=15+8x | | 48-4v=2v | | 6(x+4)-12=12(1/2x+1) | | 5+3.2n-6-4.8n=0 | | 2/7x-9=-5/7x+5 | | 18+2x-x=9x+2 | | (6x+4)+(5x+2)+(12x-4)=180 | | 7x+84=18 | | x+3/10=-3 | | 2/3(3x+6)=2x+4 | | 49+d=69 | | 6/7x+8=-1/7x-5 | | 4x+3-9x=0 | | -4×+7y=20 | | -4(x+8)-9=-41 | | 1/2x+4=5/2+2 | | 72=2x(2)+2x | | 16x=-7x | | 3/2(x+4)+5/2x=8x-15 | | 2x+5/7=3x-2/4 | | 5^3x=25^2 | | -15y-9=-(y-1) | | -5(z-8)=2-4z | | 8(x+2)=2x+28 | | 5+5x+x^2=0 | | 2t/T=28/10 |